

REPORT NO: D7716/1

REVISION NO: 0

GEOENVIRONMENTAL APPRAISAL FOR LAND AT

PORLOCK, JARROW

PREPARED FOR:

SOUTH TYNESIDE HOMES.

WRITTEN BY: KJ

DATE: 06/01/2017

CHECKED BY: AIL

DATE: 06/01/2017

● FOUNDATION HOUSE ● ST. JOHN'S ROAD ● MEADOWFIELD ● DURHAM ● DH7 8TZ

• TEL: 0191 378 3151 • FAX: 0191 378 3157

PORLOCK, JARROW – EXECUTIVE SUMMARY

SUMMARY OF GEOENVIRONMENTAL ISSUES

Issue	Remarks
Grid Reference	433725, 564280
Proposed Development	Residential properties
Former Uses	Sewage pipeline.
Present Uses	None.
Made Ground	Up to 2.1m.
Natural Ground	Locally soft, generally firm and stiff clays.
Contamination	Lead and PAH in the topsoil in the location of MBH9, lead, arsenic, PAH and asbestos in the made ground.
Hazardous Gas	A gas risk assessment will be provided on completion of the monitoring period.
Mining & Quarrying	The site is not in an area affected by shallow coal mining. No evidence has been found to suggest the site is affected by quarrying.
Foundation Solution	Strip foundations at 0.9m, or trench fill deepened to found on natural ground of adequate bearing capacity.
Groundwater & Excavations	Surface water flooding should be anticipated.
Flooding	The site is in an area affected by surface water flooding.
Drainage	Soakaway tests recorded no fall in water level. In addition, the site is in an area affected by surface water flooding.
Highways	A CBR of at least 2% should be achievable within natural clay.
Remediation and Preparatory Works	A remediation strategy will be required.
Recommendations for Further SI Works	Possible further testing around MBH9, to confirm that contaminated topsoil is an isolated hotspot.

CONTENTS

1	INTR	ODUCTION	1
	1.1	SCOPE OF INVESTIGATION	1
2	SITE	RECONNAISSANCE	1
	2.1	GENERAL	1
	2.2	TOPOGRAPHY AND SITE FEATURES	1
3	SITE	WORKS AND LABORATORY TESTING	1
	3.1	CONCEPTUAL SITE MODEL	1
	3.2	SUMMARY OF INVESTIGATION	1
	3.3	CHEMICAL TESTING	2
	3.4	GEOTECHNICAL TESTING	2
4	GRO	UND CONDITIONS & MATERIAL PROPERTIES	2
	4.1	GENERAL	2
	4.2	TOPSOIL	2
	4.3	MADE GROUND	2
	4.4	BURIED OBSTRUCTIONS	2
	4.5	NATURAL SOILS	2
	4.6	ROCK HEAD	2
	4.7	EXCAVATION STABILITY	2
	4.8	GROUNDWATER	2
	4.9	HYDROCARBON CONTAMINATION	3
	4.10	CONCRETE IN AGGRESSIVE GROUND	3
	4.11	SOAKAWAY TESTS	3
5	EAR	THWORKS	3
	5.1	INTRODUCTION	3
	5.2	EARTHWORKS SPECIFICATION AND SITE VALIDATION	3
	5.3	SITE WON MATERIALS	3
	5.4	NATURAL SOILS	3
	5.5	GROUNDWATER	4
	5.6	ASSESSMENT OF MATERIALS	4
	5.7	VALIDATION AND AUDIT PROCEDURE	4
6	CHE	MICAL TESTING RESULTS	5
	6.1	SELECTION OF CHEMICAL TESTING	5
	6.2	GENERIC ASSESSMENT CRITERIA FOR INORGANIC CONTAMINATION	5
	6.3	TOPSOIL	6
	6.4	MADE GROUND (INORGANIC CONTAMINANTS)	6
	6.5	ASBESTOS TESTING	7
	6.6	ORGANIC CONTAMINATION	7
7	ASS	ESSMENT OF CONTAMINATION RISKS	8
	7.1	SUMMARY OF CONTAMINATION SOURCES	8
	7.2	HAZARD ASSESSMENT	8
	7.3	PRELIMINARY OPTIONS APPRAISAL	9
	7.4	REMEDIATION STRATEGY	10
8	HAZ	ARDOUS GAS	10
	8.1	HAZARD IDENTIFICATION	10

	8.2	RESULTS AND DISCUSSION	10
9	FOU	NDATIONS AND GEOTECHNICAL ISSUES	10
	9.1	INTRODUCTION	10
	9.2	MINING	11
	9.3	FOUNDATIONS	11
	9.4	FLOOR SLABS	11
	9.5	BURIED OBSTRUCTIONS	12
	9.6	EXCAVATIONS	12
	9.7	ROAD PAVEMENT DESIGN	12

LIST OF APPENDICES

APPENDIX A -	Drawings
Drawing Number	Drawing Title
D7716/01	Site Location Plan
D7716/02	Exploratory Hole Location Plan
D7716/03	Conceptual Site Model
APPENDIX B -	Exploratory Hole Records
APPENDIX C -	Chemical Testing Results
APPENDIX D -	Geotechnical Testing Results
APPENDIX E -	Gas Monitoring Results
APPENDIX F -	Dunelm Conditions of Offer, Notes on Limitations & Basis for Contract

1 INTRODUCTION

1.1 SCOPE OF INVESTIGATION

Dunelm Geotechnical and Environmental Limited (Dunelm) carried out a Geoenvironmental Appraisal of land at Porlock, Jarrow on behalf of South Tyneside Homes.

It is proposed to develop the site with residential properties.

Dunelm have previously produced a Preliminary Geoenvironmental Appraisal Report (Ref D7716) dated December 2016. Reference should be made to this report for details of the site's history and environmental setting.

The objectives of this exploratory phase of investigation were as follows:

- To assess risks from ground contamination.
- To provide recommendations for foundations.

This report may be regarded as providing a Preliminary Risk Assessment and Generic Quantitative Risk Assessment in accordance with the Environment Agency's guidance document Model Procedures for the Management of Land Contamination (Contaminated Land Report 11, 2004).

Conditions of offer and notes on limitations relevant to all Dunelm geoenvironmental investigations are described in Appendix F and should be read in conjunction with this report.

2 SITE RECONNAISSANCE

2.1 **GENERAL**

The centre of the site is located at OS Grid Ref 433725, 564280. The site is situated approximately 1km southeast of Jarrow town centre. The site location is shown in Drawing Number D7716/01 in Appendix A to this report.

2.2 TOPOGRAPHY AND SITE FEATURES

The site is relatively flat. The site is currently an area of grassed public open space, with occasional public footpaths.

Mature hedgerows are present along the western boundary of the site.

3 SITE WORKS AND LABORATORY TESTING

3.1 CONCEPTUAL SITE MODEL

A preliminary conceptual site model, including an assessment of potential pollutant linkages, has been determined based on the desk study information presented in report D7716.

The main receptors include future site residents and the secondary (A) Aquifer beneath the site.

3.2 SUMMARY OF INVESTIGATION

The exploratory holes listed below were advanced during December 2016. Records for each of the exploratory holes noted are included in Appendix B and the locations are shown on Drawing Number D7716/02 in Appendix A.

- Trial pits with soakaway test SA1 and SA2.
- Mini percussion boreholes MBH1-9 and MBH7A and 7B.

3.3 CHEMICAL TESTING

Appropriate samples were delivered to a suitably accredited laboratory with a schedule of testing drawn up by Dunelm. The laboratory test results are presented in Appendix C to this report and discussed in Section 6.

3.4 **GEOTECHNICAL TESTING**

Samples of natural soil were delivered to a geotechnical laboratory with a schedule of testing drawn up by Dunelm. The geotechnical laboratory test results are presented in Appendix D to this report. Material properties assessed using the results are considered further in the following Section.

4 **GROUND CONDITIONS & MATERIAL PROPERTIES**

4.1 **GENERAL**

Strata encountered were generally similar beneath all parts of the site. Ground conditions are described in the following sections.

4.2 TOPSOIL

Topsoil up to 0.5m thick was encountered in many of the exploratory positions. The topsoil contained occasional fragments of brick, glass and plastic.

4.3 MADE GROUND

Made ground was encountered through the centre of the site up to 2.1m thick. The made ground generally consisted of reworked clays. The made ground contained a small proportion of brick and glass.

4.4 **BURIED OBSTRUCTIONS**

Buried obstructions were not encountered during this investigation.

4.5 NATURAL SOILS

The natural soils at the site consisted of locally soft, generally firm and stiff clays to depths of at least 5.45m bgl.

SPT 'N' values within the clays ranged from 10 to 32, confirming the generally firm and stiff nature of the deposits. Moisture content values within the clays ranged from 20% to 51%, together with plasticity index values between 18 and 36 suggest the clay is of intermediate to high plasticity and medium to low volume change potential.

4.6 ROCK HEAD

Rock head was not encountered during this investigation.

4.7 EXCAVATION STABILITY

During excavation of the trial pits, the side walls were observed to be generally stable.

4.8 **GROUNDWATER**

Groundwater was encountered at a depth of around 0.8m bgl in MBH6, thought to represent perched groundwater in the made ground.

Groundwater monitoring has been carried out following the completion of fieldwork and the groundwater levels recorded are shown in Appendix E. Groundwater was recorded at a depth from 0.11m bgl, however, this is thought to possibly be due to water seeping in to the installation from the surface.

4.9 HYDROCARBON CONTAMINATION

No visual or olfactory evidence of hydrocarbon contamination was noted during the investigation.

4.10 CONCRETE IN AGGRESSIVE GROUND

To enable buried concrete to be designed to resist sulfate attack, samples of made ground and natural strata from depths corresponding to the anticipated foundation depth have been tested for water-soluble sulfate and pH.

The maximum water-soluble sulfate concentration is 4000mg/l and the lowest recorded pH value is 7.4.

Based on the above results, Design Sulfate Class DS-4 and ACEC Classification AC-4 would be appropriate for buried concrete at the site.

4.11 SOAKAWAY TESTS

Soakaway tests have been carried out in trial pits SA1 and SA2 in accordance with the methods outlined in BRE Digest 365. The water level did not fall, and therefore, an infiltration rate cannot be calculated.

5 EARTHWORKS

5.1 INTRODUCTION

Earthworks operations may be undertaken on site, including;

- Excavation and stockpiling of cut material from the site
- Re-engineering of site generated materials to areas of the development

5.2 EARTHWORKS SPECIFICATION AND SITE VALIDATION

All earthworks required for the site development works are to be undertaken in accordance with an earthworks specification, this includes all site won materials and use of all imported materials.

All suitable excavation arisings generated by excavation of the ground shall be re-used as fill onsite where possible. These materials shall be assessed and validated for geotechnical works in accordance with an earthworks specification.

The validation of imported materials and identification and validation of contaminants within the site won materials will be required. Earthworks required for the site development works are to be undertaken in accordance with an earthworks specification, this includes all site won materials and use of all imported materials.

5.3 SITE WON MATERIALS

Materials excavated from the site are expected to include:

• Natural cohesive material (Glacial Clay)

5.4 NATURAL SOILS

The natural soils at the site consisted of locally soft becoming firm and stiff clays to a depth of 5.45m bgl.

Earthworks testing was carried out on the cohesive deposits. The results are included in Appendix D. The results show that the cohesive material from this location would be classified as a 2A wet cohesive fill in line with the Specification for Highways Works.

Dry density/moisture content relationship indicates the maximum dry density ranges from 1.48Mg/m³ to 1.64Mg/m³ with the optimum moisture ranging from 13% to 16%. The received moisture content for the

samples tested ranged from 28% to 33%. Therefore, the clay would need drying to within 5% of the optimum moisture content before re-use.

5.5 **GROUNDWATER**

Groundwater has been recorded at a depth from 0.11mbgl in monitoring visits post site works, however, this is thought to represent perched groundwater.

5.6 ASSESSMENT OF MATERIALS

Laboratory testing has indicated that the cohesive material would be classified as Class 2A (wet cohesive material), however, the classification of the clay may vary at different times of the year. The moisture content generally falls within the range PL-4 to 1.2PL, however, some areas of clay may require drying. Once the moisture is at acceptable limits (11.7-26.3%, with the maximum moisture content value being based on the average results of 1.2 times the plastic limit, and 0.5 times the liquid limit; the minimum moisture content value being based on the dry density/moisture content value tests). The re-use will be dependent upon the moisture content, onsite assessment/validation and weather conditions. At times of inclement weather, materials are likely to deteriorate quickly and achieving a lower moisture content may be difficult without the use of cement or lime stabilisation. Based on the acceptable moisture limits of 11.7-26.3% and the Moisture Condition Value (MCV) test results, it is recommended that MCVs between 12 and 21 are achieved for the re-used clay.

5.7 VALIDATION AND AUDIT PROCEDURE

The contractor shall appoint a suitably qualified engineer who will be responsible for auditing site earthworks operations. The responsibilities of the engineer will be as detailed in the following sections.

The engineer will be responsible for ensuring that the earthworks on site are carried out in accordance with the method statement.

The contractor will liaise with the regulatory and statutory authorities on environmental matters, as required, to ensure their satisfaction with the site works, and compliance with all planning consent conditions, licensing etc requirements.

The engineer will inspect the excavated and stockpiled material, and the cut and prepared ground surfaces, as stated in the method statement, to provide a visual assessment of the materials encountered.

The engineer will carry out the necessary sampling and laboratory analyses of material handled during the work in order to ensure compliance with the method statement.

The engineer will arrange insitu and laboratory testing, if unknown relic underground structures and tanks are encountered.

The engineer will review documentary records to be provided by the contractor of the reclamation procedures carried out. This documentary evidence will include:

- Site diary of works.
- Plans and records of depths, lateral extent and nature of any contaminated materials encountered.
- Plans and records of in-situ and laboratory testing carried out.
- Plans and records of the re-use of site excavated fill materials reinstated on site.
- Plans and records of any 'imported' fill materials reinstated onsite.
- Plans and records of the natural soil arisings reinstated on site.
- Documentation for all wastes disposed of to landfill.
- Plans and records of any 'contaminated' fill materials reinstated on site.

- Plans and records of the lateral extent and thicknesses of the cover materials installed in landscaped areas.
- Documentation of all licences, consents, permits etc issued by the Statutory and regulatory authorities, and evidence of compliance with any requirement of the above.

6 CHEMICAL TESTING RESULTS

6.1 SELECTION OF CHEMICAL TESTING

This section represents the 'Hazard Identification' process required in accordance with CLR11.

Contaminants identified in association with the former site uses have been discussed in report D7716.

Significant thicknesses of made ground were encountered in many of the exploratory locations during the ground investigation.

Appropriate chemical testing has been undertaken taking into account potential contaminants identified and evidence of contamination recorded during the ground investigation.

Laboratory test certificates are presented in Appendix C to this report. The test results are presented in the following sections.

6.2 GENERIC ASSESSMENT CRITERIA FOR INORGANIC CONTAMINATION

Generic Assessment Criteria (GAC) appropriate to current UK practice for the assessment of inorganic contamination are shown in the table below. These criteria are dependent on the nature of the proposed development. In addition, some contaminants depend on other soil parameters as shown.

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH

	Residential (based on 6% SOM)	Residential without homegrown produce (based on	Commercial (based on 6% SOM)	Allotments (based on 6% SOM)	Public Open space (resi) (based on 6% SOM)
All values in mg/kg		6% SOM)			,
Arsenic	37	40	640	43	79
Cadmium	11	85	190	1.9	120
Chromium (Total)	910	910	8,600	18,000	1,500
Chromium (VI)	6	6	33	1.8	7.7
Copper	2,400	7,100	68,000	520	12,000
Lead	200*	310*	2,330*	80*	No SSV
Mercury	40	56	1,100	19	120
Nickel	130	180	980	53	230
Selenium	250	430	12,000	88	1,100
Zinc	3,700	40,000	730,000	620	81,000

Soil Screening Values from The LQM/CIEH S4ULs for human Health Risk Assessment (2015). *taken from DEFRA C4SL database.

GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS ON PLANTS

Contaminant	Maximum Permissible Concentration from MAFF The Soil Code (1998) (mg/kg)
Copper (soil pH 5.0-5.5)	80
Copper (soil pH 5.5-6.0)	100
Copper (soil pH 6.0-7.0)	135
Copper (soil pH >7.0 & CaCO ₃ > 5%)	200
Zinc (soil pH 5.0-7.0)	200

Zinc (soil pH >7.0 & CaCO₃ > 5%) 300

6.3 TOPSOIL

A summary of the results of inorganic testing on topsoil samples is shown in the table below.

Contaminant	Units	No. of topsoil samples tested	No. of samples exceeding GAC	Generic Assessment Criteria	Max concentration above GAC
рН	-	4	0	5-11	-
Arsenic	mg/kg	4	0	37	-
Cadmium	mg/kg	4	0	11	-
Chromium (Total)	mg/kg	4	0	910	-
Chromium (VI)	mg/kg	4	0	6	-
Lead*	mg/kg	4	1	200	210
Mercury	mg/kg	4	0	40	-
Nickel	mg/kg	4	0	130	-
Selenium	mg/kg	4	0	250	-
Copper (GAC from MAFF)	mg/kg	4	0	200	-
Zinc (GAC from MAFF)	mg/kg	4	0	300	-
Asbestos	-	4	0	Present	-

INORGANIC TEST RESULTS- TOPSOIL

Soil Screening Values from The LQM/CIEH S4ULs for human Health Risk Assessment (2015). *taken from DEFRA C4SL database.

Based on the above results, the topsoil has been found to contain significantly elevated concentrations of lead in the location of MBH9 compared to a residential with plant update end use.

6.4 MADE GROUND (INORGANIC CONTAMINANTS)

A summary of the results of inorganic testing on made ground samples is shown in the table below.

INORGANIC TEST RESULTS – MADE GROUND

Contaminant	Units No. of made ground samples tested		No. of samples exceeding GAC	Generic Assessment Criteria	Max concentration above GAC
рН	-	4	0	5-11	-
Arsenic	mg/kg	4	1	37	54
Cadmium	mg/kg	4	0	11	-
Chromium (Total)	mg/kg	4	0	910	-
Chromium VI	mg/kg	4	0	6	-
Lead*	mg/kg	4	1	200	310
Mercury	mg/kg	4	0	40	-
Nickel	mg/kg	4	0	130	-
Selenium	mg/kg	4	0	250	-
Copper	mg/kg	4	0	2,400	-
Zinc	mg/kg	4	0	3,700	-
Asbestos	-	4	1	Present	Chrysotile fibres

Soil Screening Values from The LQM/CIEH S4ULs for human Health Risk Assessment (2015). *Taken from DEFRA C4SL database.

Based on the above results, the made ground has been found to contain elevated concentrations of lead and arsenic in MBH2 at 0.5m bgl.

6.5 ASBESTOS TESTING

The made ground has been found to contain asbestos in the location of MBH7 at 0.4m bgl, in the form of bundles of chrysotile fibres.

6.6 ORGANIC CONTAMINATION

The selection of hydrocarbon (organic) testing was based on the conceptual model and the assessment of potential contamination sources presented in earlier sections of this report.

Results for the 13 petroleum hydrocarbon fractions are presented in the table below together with appropriate generic assessment criteria.

			Aroma	atic frac	tions	Aliphatic fractions							
EC bands	5-7	7-8	8-10	10-12	12-16	16-21	21-35	5-6	6-8	8-10	10-12	12-16	16-35
GAC (residential with plant uptake) mg/kg	70	130	34	74	140	260	1,100	42	100	27	130	1,100	65,000
GAC (residential without plant uptake) mg/kg	370	860	47	250	1,800	1,900	1,900	42	100	27	130	1,100	65,000
GAC (allot) mg/kg	13	22	8.6	13	23	46	370	730	2,300	320	2,200	11,000	260,000
GAC (comm) mg/kg	26,000	56,000	3,500	16,000	36,000	28,000	28,000	3,200	7,800	2,000	9,700	59,000	1,600,000
GAC (Public Open Space)	56,000	56,000	5,000	5,000	5,000	3,800	3,800	570,000	600,000	13,000	13,000	13,000	250,000
Sample location & depth (m bgl)				Reco	rded con	centratio	ons (mg/l	kg) - exce	edances	in bold			
MBH1 0.2	<0.01	<0.01	<0.01	<0.9	<0.5	<0.6	<1.4	<0.01	<0.01	<0.01	<1.5	<1.2	<4.9
MBH2 0.5	<0.01	<0.01	<0.01	<0.9	<0.5	<0.6	<1.4	<0.01	<0.01	<0.01	<1.5	<1.2	<4.9
MBH6 0.5	<0.01	<0.01	<0.01	<0.9	<0.5	<0.6	<1.4	<0.01	<0.01	<0.01	<1.5	<1.2	<4.9
MBH7 0.4	<0.01	<0.01	<0.01	<0.9	<0.5	<0.6	<1.4	<0.01	<0.01	<0.01	<1.5	<1.2	<4.9
MBH8 0.4	<0.01	<0.01	<0.01	<0.9	<0.5	<0.6	<1.4	<0.01	<0.01	<0.01	<1.5	<1.2	<4.9
MBH9 0.2	<0.01	<0.01	<0.01	<0.9	<0.5	<0.6	<1.4	<0.01	<0.01	<0.01	<1.5	<1.2	<4.9

SUMMARY OF RESULTS FOR PETROLEUM HYDROCARBON FRACTIONS

Soil Screening Values from the LQM/CIEH S4ULs for Human Health Risk Assessment (2015) for a 1% SOM soil, for a residential after use.

The above assessment of the 13 petroleum hydrocarbon fractions indicates that no significant TPH concentrations have been recorded during this investigation.

Appropriate samples were tested for Organic Matter Content and the results ranged from 1.8% to 11%.

Samples of made ground and topsoil were tested for selected polynuclear aromatic hydrocarbon (PAH) compounds.

An assessment of selected PAH compounds is shown in the following table together with Generic Assessment Criteria (GAC) from the LQM guidance.

Contaminant		Generic As	sessment C	riteria (mg/kg)		No. of	No. of	Max		
	Resi with plant uptake	Residential without home grown produce	Allot ments	Comm / industrial	Public Open Space	samples tested	samples with value greater than GAC	Concentration above GAC (mg/kg)		
Acenaphthene	210	3,000	34	84,000	15,000	8	0	-		
Acenaphthylene	170	2,900	28	83,000	15,000	8	0	-		
Anthracene	2400	31,000	380	520,000	74,000	8	0	-		
Benzo(a)anthracene	7.2	11	2.9	170	29	8	1	44		
Benzo(a)pyrene	2.2	3.2	0.97	35	5.7	8	1	38		
Benzo(b)fluoranthene	2.6	3.9	0.99	44	7.1	8	1	35		
Benzo(g,h,i)perylene	320	360	290	3,900	640	8	0	-		
Benzo(k)fluoranthene	77	110	37	1,200	190	8	0	-		
Chrysene	15	30	4.1	350	57	8	1	47		
Dibenz(a,h)anthracene	0.24	0.31	0.14	3.5	0.57	8	2	5.5		
Fluoranthene	280	1,500	52	23,000	3,100	8	0	-		
Fluorene	170	2,800	27	63,000	9,900	8	0	-		
Indeno(1,2,3,-cd)pyrene	27	45	9.5	500	82	8	0	-		
Napthalene	2.3	2.3	4.1	190	4,900	8	1	15		
Phenanthrene	95	1,300	15	22,000	3,100	8	0	-		
Pyrene	620	3,700	110	54,000	7,400	8	0	-		

SUMMARY OF RESULTS FOR POLYNUCLEAR AROMATIC HYDROCARBONS

Soil Screening Values from the LQM/CIEH S4ULs for Human Health Risk Assessment (2015) for 1% SOM soil, for a residential after use.

Results indicate elevated PAH in the made ground and topsoil in the location of MBH9 compared to a residential with plant uptake end use; this will require further consideration.

7 ASSESSMENT OF CONTAMINATION RISKS

7.1 SUMMARY OF CONTAMINATION SOURCES

TOPSOIL

Topsoil up to 0.5m thick is present across the majority of the site. The topsoil contains slightly elevated concentrations of lead and PAH in the location of MBH9. It is therefore considered that the topsoil in this location is unsuitable for re-use in garden and landscaped areas.

MADE GROUND

The majority of the site is underlain by a layer of cohesive made ground up to 2.1m thick.

The made ground is contaminated with arsenic, lead and PAH.

In addition the made ground has been found to contain asbestos.

7.2 HAZARD ASSESSMENT

The results of the 'Hazard Identification' process for significant sources of contamination in accordance with CLR11 are summarised above. The following section describes the results of the 'Hazard Assessment' process in which unacceptable risks are identified. Pathways and receptors are considered below. Contamination sources and pollutant linkages are shown in the revised Conceptual Site Model presented as Drawing No. D7716/03 in Appendix A.

PATHWAYS

The proposed end use of the development is residential. Potential contaminant pathways to humans therefore include:

- ingestion of soil (outdoors) / dust (indoors)
- skin contact with soil (outdoors) / dust (indoors)
- inhalation of dust (outdoors and indoors)
- consumption of vegetables & soil attached to vegetables (proposed gardens only)
- contamination via buried water pipes

Potential contaminant pathways to controlled water receptors include:

- surface water run-off, including via existing drainage infrastructure
- downward infiltration of leachable contaminants to groundwater

RECEPTORS

Significant potential receptors are as follows:

- end users of the site (residents)
- plants in gardens / landscaped areas
- Secondary (A) Aquifer beneath the site

Transient risks to construction workers will be addressed by the adoption of appropriate health and safety measures and consequently this receptor group has not been considered further.

Based on the revised Conceptual Site Model, unacceptable risks have been identified and further action will be required as discussed in the following section.

7.3 PRELIMINARY OPTIONS APPRAISAL

This section identifies feasible remediation options for each relevant pollutant linkage; it does not represent a detailed evaluation of all possible remedial options. In practice, as noted in CLR11, "there may be a number of ways to reduce or control unacceptable risks, all of which have advantages and limitations in particular cases".

TOPSOIL

The topsoil contains elevated concentrations of lead and PAH in the location of MBH9 only. It is therefore considered possible that the contamination represents an isolated hot spot. It is recommended that the topsoil around this area should be removed from site. Further testing may be required around the location of MBH9, to confirm that the contamination is limited to this area. Once carefully stripped from the site and stockpiled, the remaining topsoil should be tested to confirm reusability, given that site works could contaminate the topsoil, if mixed with the underlying made ground.

CONTAMINATION - MADE GROUND

The made ground has been found to contain asbestos; due to the site's intended use for residential development it is recommended that all made ground containing asbestos should be excavated and removed from the site.

In addition, the made ground at the site contains elevated concentrations of arsenic, lead and PAH.

Where made ground is to remain on site it is recommended that a cover system should be placed in order to break pathways between the contamination source and future site users. This cover layer should be placed over proposed garden and soft landscaped areas, and other parts of the site that will not be covered by buildings, roads, or hardstanding.

The cover layer should comprise 450mm clean subsoil and 150mm clean topsoil.

A no dig layer incorporating an asbestos alert membrane is recommended at the base of the cover layer in order to limit future excavation into the underlying material; this layer could be sourced from suitable site derived granular material or alternatively could be formed using a geotextile with asbestos alert warning.

It is recommended that further advice be sought from all statutory service bodies with respect to the ground conditions within which they will lay services.

CONTAMINATION TO CONTROLLED WATERS

There are no controlled water receptors in the vicinity of the site. In addition, the site is underlain by a layer of clay. Therefore, there is not considered to be a significant risk of contamination to controlled waters.

7.4 **REMEDIATION STRATEGY**

A Remediation Strategy will be required by the regulatory authorities prior to site redevelopment. The Remediation Strategy document would describe the objectives of the proposed remedial works; a Method Statement is normally required from the Contractor undertaking the works, describing how these objectives are to be met. Validation of the remediation works should be undertaken by a suitably qualified engineer.

8 HAZARDOUS GAS

8.1 HAZARD IDENTIFICATION

The site is not in an area susceptible to radon emissions and as such no radon protection measures are required for new dwellings at the site.

Desk study information has indicated that the site could be affected by potential sources of gas including landfills and backfilled ground within 250m, and made ground on site.

Given the above, gas monitoring wells were installed in three boreholes during the fieldwork. Details of the monitoring installations are shown on the exploratory hole records in Appendix B.

Two visits have been carried out to record methane and carbon dioxide concentrations and borehole flow rates in accordance with current guidance.

8.2 **RESULTS AND DISCUSSION**

No methane was detected. Carbon dioxide concentrations of up to 3.0% v/v were recorded.

Once the monitoring period is complete, the complete set of monitoring results will be provided together with a gas risk assessment report with recommendations for gas protection measures for new structures. It is essential that the monitoring wells are protected from damage during re-development works such as site clearance or demolition.

9 FOUNDATIONS AND GEOTECHNICAL ISSUES

9.1 INTRODUCTION

The proposed development is understood to consist of residential properties.

Ground conditions encountered during this investigation comprised made ground up to 2.1m thick consisting of cohesive material. The underlying natural ground consisted of locally soft, generally firm and stiff clays to a depth of at least 5.45m bgl.

Rock head was not encountered during this investigation.

9.2 MINING

The site is not in an area affected by shallow coal mining.

No evidence has been found to indicate that the site has been affected by quarrying.

9.3 FOUNDATIONS

Due to the heterogeneous nature of the made ground, unacceptable total and differential settlements may occur if foundations are placed on made ground. Therefore, foundations should be taken through made ground onto underlying natural ground of adequate bearing capacity.

It is considered that strip or trench fill foundations should be suitable for the proposed structures.

Sub-surface concrete should be Design Sulphate Class DS-4, with the site allocated an ACEC Classification of AC-4.

Based on the visual description and laboratory testing, a safe bearing capacity of 100kN/m² has been determined for strip foundations 0.6m wide founding on the natural firm and stiff clay at depths of around 0.9m bgl. At this width of foundation and bearing pressure settlements should be less than 25mm.

Based on plasticity index results, all cohesive soils at the site should be regarded as being of medium volume change potential. Foundations should therefore be placed at a minimum depth of 0.9m below original or finished ground level, whichever is the lower. Where locally soft clays/made ground are encountered, foundations should be deepened to found on natural strata of adequate bearing capacity.

Foundations near existing or proposed trees should be deepened and provided with appropriate heave precautions in accordance with NHBC Standards Chapter 4.2.

Overdeepened foundations should be stepped in accordance with NHBC Standards, Chapter 4.4.

Where existing trees are to be felled, it is recommended that a tree survey be undertaken prior to felling. This would enable detailed foundation recommendations to be provided.

Foundations should be taken below a line drawn up at 45° from the base of existing or proposed services or foundations.

The site is in an area affected by surface water flooding. It is therefore recommended that a temporary drainage solution is adopted throughout construction.

It should be recognised that clay rich soils can deteriorate fairly rapidly on exposure, particularly in periods of wet weather and frost. It would be prudent to protect all exposed soils in foundation excavations with a concrete blinding layer, particularly if they are likely to remain open for extended period of time.

Prior to placing foundation concrete, obvious soft or loose spots should be removed and replaced with suitably recompacted hardcore or lean mix concrete. In addition, all excavations should be inspected to ensure that they fully penetrate areas of disturbed ground.

Further advice should be sought from Dunelm if unexpected ground conditions are encountered during redevelopment.

9.4 FLOOR SLABS

In accordance with NHBC guidelines, suspended floor slabs should be adopted where made ground exceeds 0.6m in thickness.

Alternatively, in order to utilise ground bearing slabs, made ground could be removed from beneath the footprint of the buildings and a blanket of compacted granular fill placed in accordance with an engineering specification.

Where significantly desiccated soil is present, or where foundation depths are to be increased to more than 1.5m due to the presence of trees, a suspended ground floor slab construction should be adopted. The suspended slab should have a minimum void height in accordance with NHBC Standards Chapter 4.2.

9.5 **BURIED OBSTRUCTIONS**

Buried obstructions were not encountered during this investigation.

9.6 **EXCAVATIONS**

Observations made during the fieldwork indicate that perched groundwater flows would be anticipated in shallow excavations. However, the rapid rate of advancement of the exploratory holes may mask minor seepages and it should be borne in mind that water levels fluctuate with a number of influences including season, rainfall, dewatering and pumping activities. Therefore, water levels significantly higher than those found during this investigation may be encountered.

It should be noted that the site is in an area affected surface water flooding, and a temporary drainage solution should be designed throughout construction, and during earthworks operations.

Shallow excavations should remain stable in the short term but if left open for a significant period of time will require shoring. Excavation sides should be designed, constructed and supported in accordance with the recommendations given in CIRIA Report No. 97.

It is recommended that an adequate drainage system for surface water be installed by a competent contractor in order to prevent surface water ponding or collecting during and post construction, which may in turn lead to deterioration of the founding stratum.

Based on the nature of the ground conditions encountered, excavations should be within the capacity of normal earthworks plant although breaking out of obstructions should be anticipated.

9.7 ROAD PAVEMENT DESIGN

A CBR value of 2% should be assumed for highway construction within natural clays. This is based on visual inspection and laboratory testing.

APPENDIX A

Drawings

Ν

Ground Conditions Summary	Pollutant Linkag	jes
MADE GROUND	SOURCE	 Gas emissions from offsite sources. Contamination within the made ground.
PELAW CLAY DEPOSITS	PATHWAY	 Gas emissions and inhalation or ingestion of determinants within made ground. Migration of contamination into underlying natural deposits Gas emissions & inhalation of gases from off site.
	RECEPTOR	1. Human Health 2. Secondary (A) Aquifer

Dunelm Geotechnical & Environmental Ltd Foundation House, St John's Road, Meadowfield Durham, DH78TZ Tel: 0191 378 3151 Fax: 0191 378 3157 e-mail: admin@dunelm.co.uk web: www.dunelm.co.uk

NOT TO SCALE: Contractor to check all dimensions on site before commencement of any works. No dimensions to be scaled from this drawing.

© Copyright Reserved

CLIENT:

South Tyneside Homes

PROJECT TITLE:

Porlock, Jarrow

DRAWING TITLE:

Conceptual Site Model

DRAWING NUMBER:

D7716/03

DATE:

November 2016

APPENDIX B

Exploratory Hole Records

	DUNE	TION	BOREHOLE RECORD										Borehole MBH1					
Contra	ct No: D77	716	s	Site: Porlock, Jarrow								GL - Eas	(m AO	(D	Scale 1:50 Northing:)		
Client:	South Tyne	eside Homes		Driller: SF L odged By: BC								- She	et 1 of	- 1				
Method	: Mini Pero	cussive Drilling		Checked Bv: KJ							Date	es:	05/12/201	6				
	SAMPLE	E DETAILS																
Туре	Depth From-To (m)	Insitu Testing	9	(Casing Groundwa			S	TRATA Descr	RECOR	RD.				D	epth (m)	Level (m AOD)	Legend	Well/ Backfill
D	0.20		ł		MA	DE GROL	JND: Darl	k brown s	lightly sa	andy	y claye	ey top	soil.	_ ((0.35)			
D	0.20		-		MA		JND: Gre	yish brow	n slightly	/ sa	ndy, s	slightly	/ oarse		0.35			
ES	0.50				of s	andstone,	limeston	ie, coal ai	nd brick.	igui				(0.80			
D	1.00		-1		sub	rounded,	fine to me	edium of s	andston	r. Gr ne ar	nd lim	nestor	nded to ie.	(0.40)			
D SPT (S)	1.20 - 1.65 1.20 - 1.65	N=17 (2,3/4,4,4,5)			Stif	f brown sli	ghtly san	dy, slightl	y gravelly	ly Cl	LAY. (Grave	l is		1.20			
D	1.50		ļ.		lime	estone and	o subang d coal.	ular, fine	to coarse	e of	sand	stone	,	-				
D SPT (S)	2.00 - 2.45 2.00 - 2.45	N=24 (4,5/5,6,6,7)	- 2	2										-				
														= (2	2.20)			
D	2.50																	
D	2.00. 2.40													-				
SPT (S)	3.00 - 3.38	N=50+ (7,8/10,16,21,3 fo	or 10mm)	j										-				· · · · · · · · · · · · · · · · · · ·
							E	nd of Boreh	ole at 3.40 i	m					3.40			
			- 4	Ļ										-				
			ŀ											E				
														-				
			- 5	i										-				
			-											-				
			-											Ē				
			-6	i										-				
														-				
			[F				
			- 7	,										E				
														-				
														-				
														_				
			- 8	5										_				
			-											-				
			-											F				
			ŀ															
			- 9)										E				
			-											F				
			ŀ											Ē				
				0										-				
Donth Ot	Ground Wate	er (m)	Chise	elling / Hard	Strata	Casing	Depths	Hole D	ameter	Ge	enera	l Ren	arks		1. 1.*		1	1
uepin Struck/Ca (m)	(m) Water Le	wel Minutes (m)	From (m)	To (m)	Time (hr)	(mm)	Depth (m)	(mm)	Depth (m)	1. 2.	Hand No gr	i dug i round	nspecti water e	on pit ncoun	to 1.2 tered.	um.		
Log last upo	dated 09/01/201	7																

	DUNE OTECHNICAL & ENVIR	COMMENTAL	RILLING			BORE	HOL	E RE	COR	D		Bore MB	hole H2	
Contra	ct No: D77	'16	S	ite: Por	lock, Ja	rrow					GL (m AO - Easting:	D) 5	Scale 1:50 Iorthing:	
Client:	South Tyne	side Homes						Drille	er: SF	Logged By: DF	- Sheet 1 of	- 1		
Method	: Mini Pero	cussive Drilling						Cheo	cked By: I	KJ	Dates:	29/11/2016	3	
	SAMPLE	EDETAILS		ıg) vater			e.	трата		D	Dauth			M-11/
Туре	Depth From-To (m)	Insitu Testir	g	(Casir Groundy				Descr	iption		(m)	(m AOD)	Legend	Backfill
ES D ES D	0.20 0.30 0.50 0.60				MA top san MA sub mu	DE GROU soil. Grave dstone an DE GROU angular to dstone. Of	JND: Dark el is subar id brick. C JND: Brov subroun ccasional	k brown s ngular to <u>Organic fil</u> vn slightl ded, fine bricks ar	andy, cla subrounc <u>ores note</u> y sandy, g to coarse nd brick fr	yey, slightly gravelly led, fine to coarse of d. gravelly clay. Gravel is e of sandstone and agments noted.	0.40			
D SPT (S) D	1.20 - 1.65 1.20 - 1.65 1.50	N=8 (2,2/2,2,2,2)	- 1								(1.70) 			
D SPT (S) D	2.00 - 2.45 2.00 - 2.45 2.50	N=11 (2,2/2,3,3,3)	-2		Firr CL/ coa	n dark gre AY. Gravel I and mud	y, slightly is suban Istone.	sandy sl gular to s	ightly gra ubrounde	velly, slightly organic ed, fine to medium of	2.10			
D SPT (S)	3.00 - 3.45 3.00 - 3.45	N=10 (2,2/2,2,3,3)	- 3								(2.50)			
D	3.50		-		3.5 coa	0 - 3.70m: Ba Irse of sandst	nd of gravell one, mudsto	ly clay. Grav ne and coal	el is subang	ular to subrounded, fine to				
D SPT (S)	4.00 - 4.45 4.00 - 4.45	N=15 (2,3/3,4,4,4)	-4								- - - -			
D D SPT (S)	4.70 5.00 - 5.45 5.00 - 5.45	N=26 (5,5/6,6,7,7)	- 5		Stif sub mu	f brown sli angular to dstone an	ghtly san subroun d coal.	dy, slighti ded, fine	y gravelly to mediu	/ CLAY. Gravel is m of sandstone,	4.60			
			-				Er	nd of Boreh	ole at 5.45 r	m	5.45 			
			- 6											
			- 7											
			- 8											
			- 9											
	Ground Wate	er (m)) Iling / Hard	Strata	Casino	Depths	Hole D	iameter	General Remarks				
Depth StruckC (m)	asing Depth (m) Water Le	vel Minutes Water sealed (m)	From (m)	To (m)	Time (hr)	Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	 Hand dug inspectio No groundwater en 	n pit to 1.2 countered.	0m.		
Log last up	dated 09/01/201	7												

	DUNE	UNMENTAL Street DRILLING		BOREHOLE	RECOR	D		Bore MB	hole H3	
Contra	ct No: D77	716	Site: Porloc	ck, Jarrow			GL (m AO - Easting:	D) (Scale 1:50 Iorthing:	
Client:	South Tyne	eside Homes			Driller: SF	Logged By: TMK	Sheet 1 of	- f 1		
Method	: Mini Pere	cussive Drilling			Checked By: I	٢J	Dates:	28/11/201	6	
	SAMPLI	E DETAILS	g) ater			-				
Туре	Depth From-To (m)	Insitu Testing	(Casin Groundw	511	Description	5	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES B D	0.20 0.20 0.30 - 0.50 0.40			MADE GROUND: Dark to clayey topsoil, with occas angular, fine to coarse of Firm light orangey brown gravelly CLAY. Gravel is sandstone and occasion	brown slightly sa sional cobbles of sandstone, muc mottled grey, sl angular, fine to r al coal.	ndy, silty gravelly f sandstone. Gravel is dstone and coal. ightly silty, slightly nedium of mudstone,	0.40			
D SPT (S) D	1.20 - 1.65 1.20 - 1.65 1.50	N=14 (2,3/3,3,4,4)		From 1.20m: Decreasing silt and	<u>d gravel</u> content. Becc grey, silty CLAY.	oming stiff	- - - - - 1.50			
D SPT (S)	2.00 - 2.45 2.00 - 2.45	N=19 (4,4/4,5,5,5)	- 2				 (1.50)			
D	2.50									
D SPT (S) D	3.00 - 3.45 3.00 - 3.45 3.50	N=23 (5,5/5,5,6,7)	- 3	Stiff dark brown, slightly angular, fine to medium o	sandy, silty, grav of sandstone, mu	elly CLAY. Gravel is udstone and coal.	3.00 		X X X X X X X X X X X X X X X X X X X	
D	4.00 - 4.30		- 4	At 4 00m Vorustiff			(1.31) 		X X X	
SPT (S)	4.00 - 4.31	N=50+ (7,7/11,27,12 for 10mm)		At 4.00m: Very Stim.			- 131		×	
			- 7 - 7 - 9 - 10							
Depth StruckCa	Ground Wate	er (m) C	Chiselling / Hard Strat	ta Casing Depths	Hole Diameter	General Remarks	n nit to 1 ?	0m	1	
(m) Log last upp	(m) Water Le	Minutes Instruction control From (r (m) (m) From (r 7	n) Fo (m) Ti	Ime (nr) - (mm) Depth (m)	(mm) Depth (m)	2. No groundwater en	countered.	<u>un.</u>		

	DUNE		RILLING			BORE	HOL	E RE	COR	D		Bore MB	ehole 8H4	
		³ SOCI)	110								GL (m AO	D) (Scale 1:50	
Contra	ct No: D77	'16	:	Site: Po	rlock, Ja	arrow					- Easting:	Ν	Northing:	
Client:	South Tyne	side Homes						Drille	er: -	Logged By: TMK	Sheet 1 of	1		
Method	: Mini Pero	cussive Drilling						Cheo	cked By:	KJ	Dates:	28/11/201	6	
Туре	SAMPLE Depth From-To (m)	E DETAILS	g	(Casing) Groundwater			S	TRATA Descr	RECOR iption	D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES B D	0.20 0.20 0.40 0.40		- - - - - - - - - - - - - - - - - - -	- 1	M/ gra sa Sti silt	ADE GROU avelly tops ndstone, b ff, light ora y, gravelly e to mediu	JND: Dar oil. Grave rick and c ngey brov CLAY, wi m of sand	k brown c I is angula coal. Plast wn mottle th low col dstone, m	clayey, sa ar, fine to tic noted. d grey, s bble cont udstone	ndy, silty slightly coarse of mudstone, lightly sandy, slightly ent. Gravel is angular, and coal.	(0.40) 0.40			
D SPT (S) D	1.20 - 1.65 1.20 - 1.65 1.50	N=17 (3,3/4,4,4,5)												
D SPT (S)	2.00 - 2.45 2.00 - 2.45	N=26 (4,5/5,6,7,8)	-	2							(3.70)			
D	2.50		-	- 2										
SPT (S)	3.00 - 3.45	N=32 (6,7/7,8,8,9)		- 3							-			
D D SPT (S)	3.50 3.70 - 4.10 3.70 - 4.01	N=50+ (9,10/17,22,11 fc	or 10mm)	- 4			E	nd of Boreh	ole at 4.10	m	4.10			
				- 5										
				- 6							- - - - - -			
			-	- 7							 - - - -			
			-											
			-	- 8										
			-	- 9										
			- - - - - - - - - - - - - - - - - - -											
<u> </u>	Ground Wate	er (m)	Chi	10 iselling / Hard	Strata	Casing	g Depths	Hole D	iameter	General Remarks				
Depth Struck C: (m)	asing Depth (m)	vel Minutes Water sealed (m)	From (m)	To (m)	Time (hr)	Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Hand dug inspectio 2. No groundwater end	n pit to 1.2 countered.	0m.		
Log last up	dated 09/01/201	7												

	DUNE	LIM Strish	RILLING TION		E	BORE	HOL	E RE	COR	D			Bore MB	hole H5	
Contra	ct No: D77	716	S	i te: Poi	lock, Ja	rrow						GL (m AOI - Easting: -	D) (Scale 1:50 Iorthing:	
Client:	South Tyne	eside Homes						Drille	er: SF	L	ogged By: BC	Sheet 1 of	1		
Method	: Mini Pero	cussive Drilling						Cheo	cked By: I	KJ		Dates:	06/12/201	6	
Туре	SAMPLE Depth	E DETAILS	ıg	(Casing) oundwater			S	TRATA I Descr	RECORI iption	D		Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES D D D L	0.20 0.20 0.50 1.00 1.20 - 1.65 1.20 - 2.00				MAI Gra san Firm	DE GROU DE GROU vel is sub dstone, lin	JND: Dar JND: Brow rounded mestone, brown, sli	k brown s wn slightly to subang mudstone	andy clay y sandy, s gular, fine e and bric dy, slightl	yey top slightly to coa ck.	osoil. y gravelly clay. arse of yelly CLAY.	(0.30) (0.30) (0.90) (0.90) (1.20)			
D L SPT (S)	1.20 - 1.65 2.00 - 2.45 2.00 - 3.00 2.00 - 2.45	N=10 (2,2/2,2,3,3) N=12 (2,3/3,3,3,3)	-2	2	Gra san	vel is sub dstone, m	rounded t	to subang and coal.	jular, fine	to me	dium of				
D L SPT (S)	3.00 - 3.45 3.00 - 4.00 3.00 - 3.45	N=13 (3,3/3,3,3,4)		4 Becoming stiff by 4.00m.								- - - (4.25) - - -			
D SPT (S) D SPT (S)	4.00 - 4.45 4.00 - 5.00 4.00 - 4.45 5.00 - 5.45 5.00 - 5.45	N=16 (3,4/4,4,4,4) N=21 (4,5/5,5,5,6)	- 5	5	Bec	oming stiff b	y 4.00m.								
			- 6	5			E	nd of Boreho	ole at 5.45 r	m		0.43 			
				3											
				0								-			
Depth Struck Ca (m)	Ground Wate asing Depth (m) Water Le	r (m) Water sealed (m)	Chis From (m)	To (m)	Time (hr)	Casing Diameter (mm)	Depths Depth (m)	Hole Di Diameter (mm)	iameter Depth (m)	Gene 1. Ha 2. No	aral Remarks nd dug inspec groundwater	tion pit to 1.2 encountered.	0m.		

	DUNE OTECHNICAL & ENVIRO	NMENTAL 3550CI	ATION		В	ORE	HOL	E RE	CORI	D				Bore MB	hole H6	
Contra	ct No: D77	16	s	Site: Porlo	ck, Jarı	row							GL (m AO - Easting:	D) {	Scale 1:50 Iorthing:	
Client:	South Tyne	side Homes						Drille	er: SF		Logged	By: BC	Sheet 1 of	1		
Method	: Mini Perc	ussive Drilling						Chec	ked By: k	KJ	1		Dates:	06/12/201	6	
	SAMPLE	DETAILS		ig) vater			e.	трата і	DECODI	n						
Туре	Depth From-To (m)	Insitu Testii	ng	(Casir Groundv				Descr	iption	<u> </u>			(m)	(m AOD)	Legend	Backfill
D	0.20		ľ			E GROU	IND: Darl	k brown c	layey top:	SOII.			(0.45)			
D	0.50		-		MAD	E GROU	IND: Brov	vn sandy,	, slightly g	grav	elly clay,	with	0.45			
ES	0.50				frequ brick	ent cobb	les of bri	ck. Grave	l is angul	lar o	f sandsto	ne and	(0.75)			
			ľ				Er	nd of Boreho	ole at 1.20 n	m			1.20			
			-										-			
			ļ										_			
			- 2	2												
			ł										E			
			-										-			
			- 3	3									_			
			-										-			
			-										-			
			- 4	1												
			ŀ													
													-			
			- 5	5									-			
			ļ													
			Ī										_			
													-			
			- C	5												
			-													
			- 7	7									-			
			ļ										F			
			ļ										F			
			ŀ													
			- 8	3									E			
			ŀ										F			
			ļ										-			
			- 0	9												
													E			
			ŀ										Ę			
			ļ													
<u> </u>			<u> </u> 1	10	<u> </u>											
Depth Struck C	Ground Wate	r (m) vel Minutes Water sealed	Chise From (m)	elling / Hard Stra	ta ime (hr)	Casing Diameter	Depths Depth (m)	Hole Di Diameter	Depth (m)	Ge ı 1. ⊦	neral Rer Hand duo	narks inspectio	n pit to 1.2	0m.		
(m) 0.80	(m) 0.30	20 (m)		- ()	- \/	(mm)		(mm)	-F. (11)	2. E	Borehole t	terminate	d at 1.20m	due to po	ssible ser	vice.
Log last up	dated 09/01/201	7	1													

	DUNEL OTECHNICAL & ENVIRO		Retrist D	RILLIN.			BORE	HOL	E RE	COR	D			Bore MB	hole H7	
Contra	ct No: D77	16		:	Site: Po	rlock, J	larrow						GL (m AO	D) §	Scale 1:50 Iorthing:	
Client:	South Tyne	side Ho	omes						Drille	er: SF	Logg	ed By: TMK	Sheet 1 of	- 1		
Method	I: Mini Perc	ussive	Drilling						Cheo	cked By:	KJ		Dates:	28/11/2016	3	
Туре	SAMPLE Depth From-To.(m)	DETAI	LS situ Testir	ng	(Casing) roundwater			s	TRATA Descr	RECOR iption	D		Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES B D ES B D	From-To (m)				2 3 4	N tc M C C F S S	ADE GROU psoil. Grave udstone an ADE GROU al and brict irm light ora andy, grave ubrounded of	JND: Dar el is angu d sandstu JND: Dar s angular k. ngey bro lly CLAY. <u>of sandstu</u> Ei	k brown c lar to sub one. k brown s , fine to co wn mottle Gravel is one, muds nd of Boreh	d grey, sil fine to co stone and ole at 1.20	ty, sandy g fine to coa tly sandy, g sandstone, lightly silty, parse angu <u>d coal.</u> m	ravelly arse of mudstone, slightly lar to	(0.20) 0.20 (0.70) 0.90 (0.30) 1.20 			
					5 7 8 9											
				-	10											
Depth StruckC (m)	Ground Water asing Depth (m) Water Lev dated 09/01/201	r (m) rel Minutes	Water sealed (m)	Chis From (m)	Selling / Hard To (m)	Strata Time (hr	Casing Diameter (mm)	Depths	Hole D Diameter (mm)	iameter Depth (m)	General I 1. Hand d 2. No gro	Remarks lug inspectio undwater end	n pit to 1.2 countered.	0m.		

	UNEL EDTECHNICAL & ENVIRON		Ratish D	TION			BORE	HOL	E RE	COR	D				Bore MBI	hole 17A	
Contra	ct No: D77	16		ę	Site: Po	rlock, Ja	arrow							GL (m AO - Easting: -	D) s N -	Scale 1:50 lorthing:	
Client:	South Tynes	side Ho	mes						Drille	er: SF	L	ogged B	y: TMK	Sheet 1 of	1		
Method	I: Mini Perc	ussive [Drilling						Cheo	ked By:	KJ			Dates:	28/11/2016	6	
Туре	SAMPLE Depth From-To (m)	DETAIL	.S itu Testin	g	(Casing) Groundwater			S	TRATA I Descr	RECOR iption	D			Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES B D ES	0.20 0.20 0.40 0.40 0.40					MA top mu MA cla	DE GROU soil. Grave dstone an DE GROU y. Gravel is	JND: Dar el is angu d sandsto JND: Dar s angular	k brown c lar to sub one. k brown s , fine to co	layey, sili rounded, ilty, slight parse of s	ty, sand , fine to tly sand sandsto	dy grave coarse dy, grave one, muc	lly of elly dstone,	(0.20) 0.20 (0.70)			
B D	0.90 0.90			-	1	coa Firi CL Sar	al and bricl m light ora AY. Gravel ndstone, m	k. ngey brov is fine to nudstone E	wn mottle coarse a and coal. nd of Boreho	d grey, sl ngular to ble at 1.20 p	lightly s subrou	silty, grav unded of	velly	0.90 (0.30)			
					2												
				- - - - - -	3												
					4												
					*												
					5												
					6												
					7												
					0												
				- - - - -	0												
					9												
	Ground Water	r (m)		Chie	10 selling / Hard	Strata	Casing	Depths	Hole Di	ameter	Gano	ral Pom	arke				
Depth Struck C (m)	asing Depth (m)	el Minutes ^V	Vater sealed (m)	From (m)	To (m)	Time (hr)	Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Hai 2. No	nd dug ir groundw	ans hspection vater end	n pit to 1.2 countered.	0m.		
Log last up	dated 09/01/2017	7															

	DUNEL EDTECHNICAL & ENVIRO		Posoci	RILLING			BORE	HOL	E RE	COR	D				Bore MBI	hole H7B	
Contra	ct No: D77	16		:	Site: Po	rlock, J	Jarrow							GL (m AOI - Easting: -) (C ۸ -	Scale 1:50 lorthing:	
Client:	South Tyne	side Ho	mes						Drille	er: SF		Logged B	y: TMK	Sheet 1 of	1		
Method	I: Mini Perc	ussive	Drilling						Cheo	ked By: I	KJ			Dates:	28/11/2016	3	
Туре	Depth From-To (m)	DETAII	LS situ Testir	ıg	(Casing) Groundwater			S	TRATA I Descr	RECORI iption	D			Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES B D ES	0.20 0.20 0.40 0.40 0.40					M to m M cl	ADE GROU psoil. Grave udstone an ADE GROU ay. Gravel is	JND: Dar el is angu d sandsto JND: Dar s angular	k brown c Iar to sub one. k brown s ; fine to co	layey, silt rounded, ilty, slight parse of s	ty, sa , fine tly sa sands	ndy gravel to coarse o ndy, grave stone, muc	lly of lly Istone,	(0.20) 0.20 (0.70) 			
B D	0.90 0.90			-	1	Fi gr	irm light ora ravelly CLA f sandstone,	ngey brov Y. Gravel , mudstor E	wn mottle is fine to ne and co nd of Boreho	d grey, sli coarse ar al. ble at 1.20 r	lightly ngula m	r silty, very	unded	0.90		× · · · · · · · · · · · · · · · · · · ·	
				-	2												
				- - - - - - -	3												
				-													
				- - - - - - - - - - - 	4												
				- - - - - - -	5												
				-	6												
				- - - - - - -	7												
				- - - - - -	,												
				- - - - - - - -	8												
					9												
					10												
ļ,	Ground Wate	r (m)		Chi	selling / Hard	Strata	Casing	Depths	Hole Di	ameter	Gen	eral Rema	arks		I		
Depth StruckC (m)	asing Depth (m) Water Lev	rel Minutes	Water sealed (m)	From (m)	To (m)	Time (hr) Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. H 2. N 3. B	and dug in o groundw orehole tei	spectior ater encorminated	n pit to 1.20 countered. I at 1.20m	0m. due to pos	ssible ser	vice.
Log last up	dated 09/01/201	7															

	DUNE OTECHNICAL & ENVIR	LIM SUTISH D	RILLING		E	BORE	HOL	E RE	COR	D			Bore MB	ehole 8H8	
		130°°	a									GL (m AO	D)	Scale 1:50	
Contra	ct No: D77	'16	S	ite: Porl	ock, Ja	rrow						- Easting:	١	Northing:	
Client:	South Type	side Homes						Drille	er: SF	I	_oaged By: TMK	- Sheet 1 of	- f 1		
Method	: Mini Pero	cussive Drilling						Cheo	cked By: I	KJ		Dates:	28/11/201	6	
	SAMPLE	E DETAILS		3) ater											
Туре	Depth From-To (m)	Insitu Testin	g	(Casing Groundw			S	Descr	iption	D		Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES ES D	0.20 0.20 0.40 0.50 0.60		- - - - - - - - - - - - - - - - - - -		MAI grav coa MAI Gra san Firn san	DE GROU velly topso rse of mu DE GROU vel is sub dstone an n light ora dy gravell	JND: Darl bil. Grave dstone, s JND: Darl angular to d chalk. s ngey brow y CLAY. (k brown s I is suban andstone k brown s o rounded Small frag Small frag Gravel is a	slightly cla agular to r and brick silty, sand d, fine to o gments of d grey, sl angular to	ayey, s rounde <u>k.</u> ly very coarse f glass lightly o suba	silty, sandy ed, fine to gravelly clay. e of mudstone, note silty, slightly angular, fine to	(0.20) 0.20 0.20 0.40 (0.80) 0.40			
D SPT (S) D	1.20 - 1.65 1.20 - 1.65 1.50	N=14 (2,3/3,3,4,4)	-		<u>coa</u> Stiff san coa	rse of san dark orar dy gravell rse of san	ngey brov y CLAY. (idstone, r	nd mudst vn, mottle Gravel is s nudstone	one. ed dark gr subangul and coal	rey, sli ar to r I.	ghtly silty, ounded, fine to				
D SPT (S)	2.00 - 2.45 2.00 - 2.45	N=25 (4,5/5,6,7,7)	- 2	2								 (2.15)			
D	2.50		- - - - -											×+× ×+× ×+×	
D SPT (S)	3.00 - 3.35 3.00 - 3.40	N=50+ (5,7/9,10,18,13 f	or 20mm)	3			E	nd of Boreh	ole at 3.35 r	m		 			
			-												
			- - 4	L											
			- 5	5											
			- - - -												
			- - - 6	3											
			- - - -									- - - -			
			- 7	,											
			- 8	3								- - - -			
			- - - -												
			- 9 - 9)											
				0								F	<u> </u>		
Depth Struck		er (m) Water sealed	Chise	elling / Hard Si	rata	Casing	Depths	Hole D	iameter	Gene	eral Remarks	n nit to 1.0	10m		
(m)	(m) Water Le	(m)	From (m)	Io (m)	Time (hr)	(mm)	Depth (m)	(mm)	Depth (m)	2. No 3. Bo	groundwater er rehole terminate	acountered. ad at 3.35m	due to ob	struction.	
	dated 09/01/201	7													
Log last up	ualeu 09/01/201	1													

	DUNE	UNMENTAL		I	BORE	HOL	E RE	COR	D		Bore ME	ehole 8H9	
Contra	ct No: D77	716	Site: Por	lock la						GL (m AO -	D) ;	Scale 1:50	
Contra		10	Site. 1 Of	IUCK, JA	IIIOW					Easting: -	۱ -	Northing:	
Client:	South Tyne	side Homes					Drille	er: SF	Logged By: TM	IK Sheet 1 of	f 1		
Method	: Mini Pero						Cheo	cked By:	KJ	Dates:	28/11/201	6	
Туре	Depth From-To (m)	Insitu Testing	(Casing) Groundwat			S	TRATA Descr	RECOR iption	D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES B D SPT (S) D SPT (S) D SPT (S)	0.20 0.20 0.50 0.50 1.00 1.20 - 1.65 1.20 - 1.65 1.20 - 2.45 2.00 - 2.45 2.00 - 2.45 2.50 3.00 - 3.30 3.00 - 3.31	N=14 (2,3/3,3,4,4) N=24 (4,4/5,6,6,7) N=50+ (5,6/10,22,18 for 10)	nm) -1 -1 -1 -2 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9	MA gra coa Firr CL/ mu san	DE GROU verse of sar n light ora 4Y. Gravel dstone an d. Sand is <u>0-1.50m: Be</u>	JND: Darl bil. Grave Idstone, c ngey brov. is angula d sandsto s fine to rr coming less Er	k brown of is subara soal, brick wn mottle ar to subas ne. Occa hedium. gravelly:	ole at 3.50	mdy, silty slightly rounded, fine to istone. ightly silty gravelly ne to medium of coa nses of dark grey sil m	(0.50) 0.50 1, (3.00) - (3.00) - (3.00)			
			-							-			
			10	24ma4-		Derth	···	lamet-	Occurred Direction	-			
Depth Struck Ca (m)	dated 09/01/201	vel Minutes Water sealed (m) F (m) F 17	rom (m) To (m)	Time (hr)	Casing Diameter (mm)	Depth (m)	Hole D Diameter (mm)	Depth (m)	1. Hand dug inspec 2. No groundwater	tion pit to 1.2 encountered.	0m.		

	GEDTECHNICA	NELR	TAL		т	RIAL PIT R	ECORD			TP I SA	No. \1	
Contra	ct No.: D771	6		Site: Porlock	(, Jarrow					S	cale 1:25	
Client:	South Tynesic	de Homes					Logged By: DF	She	eet 1 of	1		
Method	: Machine Ex	cavated 1	rial Pit				Checked By: KJ	Dat	es:	29/11/2016		
S/	AMPLE DETA	ILS	ter				-			Level		
Туре	Depth From-To (m)	Insitu Testing	Groundwa			STRATA RE Descripti	CORD	[Depth (m)	(m AOD) PID (ppm)	Legend	Backfill
B ES D	0.20 - 0.40 0.20 0.30		- - - - - -	MADE GROU subangular to and coal. Org	JND: Dark subround janic fibres	brown clayey, s led, fine to med s noted. Rare gl	slightly sandy topsoil. Gravel ium of sandstone, mudstone ass and brick fragments note	s d				
ES D	0.60 0.70			Stiff brown m is subangular	ottled grey	, slightly sandy, inded, fine to co	slightly gravelly CLAY. Grave arse of sandstone.		0.50			
D	1.40	.40 Stiff brown slight to subrounded, fi				ly, slightly grave nedium of sand	Ily CLAY. Gravel is subangulation stone and mudstone.	ar _	1.30			
			- 2 - 2 			End of Trial Pit a	t 1.50 m		1.50			
Remarks	 s				Grou	und Water (m)	Excavation Details			 Orient	ation	
1. No gro	oundwater end	countered.			Depth Strike	Remarks	Dimensions: 0.40m x 1.50 Stability: Stable Weather: Remarks: Machine Excavated Trial F	m	D	A C	В	170°

	CEDTECHNICA	ELN & ENVIRONMENT	AL		т	RIAL PIT R	ECORD			TP N SA	NO. 2	
Contra	ct No.: D7716	6		Site: Porlock	, Jarrow					So	ale 1:25	
Client [.]	South Typesic	la Homes					Logged By: DF	Shee	s+1 ∩f 1			
Method	Hand Excav	vated Tria	l Pit				Checked By: Kil	Date	s: 2	29/11/2016		
S			5									
Туре	Depth From-To (m)	Insitu Testing	Groundwat			STRATA REO Descripti	CORD	De (epth m)	(m AOD) PID (ppm)	Legend	Backfill
D	0.20			MADE GROU subangular to	JND: Brow	rn slightly sandy led, fine to coars	, slightly gravelly clay. Gravel se of sandstone and brick.	S	.20			
			- 5					-				
Remarks	3			L	Grou	und Water (m)	Excavation Details			Orient	ation	
1. No gro	oundwater enc	ountered.			Depth Strike	Remarks	Dimensions: m x m Stability: Weather:		D	A C	В	0
							Remarks: Hand Excavated Trial F	Pit		-]	

APPENDIX C

Chemical Testing Results

Certificate of Analysis Certificate Number 16-85738

13-Dec-16

Client Dunelm Geotechnical & Environmental Ltd Foundation House St. John's Road Meadowfield Durham DH7 8TZ

- Our Reference 16-85738
- Client Reference D7716
 - Order No 9890KJD7716
 - Contract Title Porlocj
 - Description 8 Soil samples.
 - Date Received 05-Dec-16
 - Date Started 05-Dec-16
- Date Completed 13-Dec-16

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

-4Q.

Rob Brown Business Manager

	Lab No		1094245	1094246	1094247	1094248	1094249	1094250	
		Sa	ample ID	MBH1	MBH2	MBH3	MBH5	MBH6	MBH7
			Depth	0.20	0.50	0.20	0.20	0.50	0.40
		(Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	29/11/16	29/11/16	28/11/16	29/11/16	29/11/16	28/11/16
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	8.6	54	20	16	8.7	19
Cadmium	DETSC 2301#	0.1	mg/kg	0.6	3.0	1.0	0.9	0.6	0.5
Chromium	DETSC 2301#	0.15	mg/kg	21	19	32	22	22	22
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	23	170	50	49	25	39
Lead	DETSC 2301#	0.3	mg/kg	51	310	120	110	41	42
Mercury	DETSC 2325#	0.05	mg/kg	0.07	0.41	0.18	0.19	0.08	0.10
Nickel	DETSC 2301#	1	mg/kg	19	29	22	23	24	22
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	60	890	120	180	67	79
Inorganics									
рН	DETSC 2008#			8.1	7.6	7.4	7.7	8.2	8.1
Organic matter	DETSC 2002#	0.1	%	3.6	4.7	5.0	11	1.8	2.7
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	33	2000	70	380	840	130
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01			< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01			< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01			< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5			< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2			< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5			< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4			< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10			< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01			< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01			< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01			< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9			< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5			< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6			< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4			< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10			< 10	< 10
TPH Ali/Aro Total	DETSC 3072*	10	mg/kg	< 10	< 10			< 10	< 10
PAHs	-						1		
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	15
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.5
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	21
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	18
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.3	< 0.1	130
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.6	< 0.1	18
Fluoranthene	DETSC 3301	0.1	mg/kg	0.2	< 0.1	< 0.1	1.1	0.2	120
Pyrene	DETSC 3301	0.1	mg/kg	0.1	< 0.1	< 0.1	0.7	0.4	93

			Lab No	1094245	1094246	1094247	1094248	1094249	1094250
		Sa	ample ID	MBH1	MBH2	MBH3	MBH5	MBH6	MBH7
			Depth	0.20	0.50	0.20	0.20	0.50	0.40
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	29/11/16	29/11/16	28/11/16	29/11/16	29/11/16	28/11/16
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.6	< 0.1	44
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.5	< 0.1	47
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.3	< 0.1	35
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.2	< 0.1	20
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.4	< 0.1	38
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	26
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	5.5
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	25
PAH Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6	< 1.6	4.8	< 1.6	660

			Lab No	1094251	1094252
		Sa	ample ID	MBH8	MBH9
			Depth	0.40	0.20
			Other ID	0.10	0.20
		Sam	nle Type	FS	FS
		Sampl	ing Date	28/11/16	28/11/16
		Sampl	ing Time	20, 11, 10 n/s	n/s
Test	Method		Units	1,3	
Metals	methou		•		
Arsenic	DFTSC 2301#	0.2	mg/kg	13	23
Cadmium	DETSC 2301#	0.1	mg/kg	0.9	1.0
Chromium	DETSC 2301#	0.15	mg/kg	21	24
Chromium Hexavalent	DETSC 2201#	1	mg/kg	< 1.0	< 1.0
Copper	DETSC 2204	0.2	mg/kg	62	81
Lead	DETSC 2301#	0.2	mg/kg	75	210
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	0.55
Nickel	DETSC 2323#	0.05	mg/kg	26	29
Selenium	DETSC 2301#	05	mg/kg	< 0.5	< 0.5
Zinc	DETSC 2301#	0.5	mg/kg	160	180
	DE136 2301//		<u>8, 18, 11</u>	100	100
nH	DFTSC 2008#			89	82
Organic matter	DETSC 2000#	0.1	%	2.9	6.3
Sulphate Aqueous Extract as SO4	DETSC 2002#	10	mg/l	58	29
Petroleum Hydrocarbons	DE136 20701	10	11.9/1	50	
Aliphatic C5-C6	DFTSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1 5	mg/kg	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.3	mg/kg	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1 4	mg/kg	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10
TPH Ali/Aro Total	DETSC 3072*	10	mg/kg	< 10	< 10
PAHs	02100 0072	10	<u> </u>	110	110
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	0.4
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mø/kø	< 0.1	0.1
Phenanthrene	DETSC 3301	0.1	mø/kø	< 0.1	2.4 2.2
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	1 1
Fluoranthene	DETSC 3301	0.1	mg/kg	0.2	4.4
Pyrene	DETSC 3301	0.1	mg/kg	0.3	3.7
				0.0	2.17

			Lab No	1094251	1094252
		Sa	mple ID	MBH8	MBH9
			Depth	0.40	0.20
		(Other ID		
		Samj	ple Type	ES	ES
		Sampli	ing Date	28/11/16	28/11/16
		Sampli	ng Time	n/s	n/s
Test	Method	LOD	Units		
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	2.0
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	1.9
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	1.2
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	0.8
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	1.7
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	0.8
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	0.3
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	0.9
PAH Total	DETSC 3301	1.6	mg/kg	< 1.6	23

Summary of Asbestos Analysis Soil Samples

Our Ref 16-85738 Client Ref D7716 Contract Title Porlocj

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
1094245	MBH1 0.20	SOIL	NAD	none	Andrew Little
1094246	MBH2 0.50	SOIL	NAD	none	Andrew Little
1094247	MBH3 0.20	SOIL	NAD	none	Andrew Little
1094248	MBH5 0.20	SOIL	NAD	none	Andrew Little
1094249	MBH6 0.50	SOIL	NAD	none	Andrew Little
1094250	MBH7 0.40	SOIL	Chrysotile	Small bundle of Chrysotile fibres	Andrew Little
				present	
1094251	MBH8 0.40	SOIL	NAD	none	Andrew Little
1094252	MBH9 0.20	SOIL	NAD	none	Andrew Little

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 16-85738 *Client Ref* D7716 *Contract* Porlocj

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1094245	MBH1 0.20 SOIL	29/11/16	GJ 250ml, GJ 60ml, PT 1L x2		
1094246	MBH2 0.50 SOIL	29/11/16	GJ 250ml x2, PT 1L		
1094247	MBH3 0.20 SOIL	28/11/16	GJ 60ml, PT 1L		
1094248	MBH5 0.20 SOIL	29/11/16	GJ 250ml, GJ 60ml, PT 1L		
1094249	MBH6 0.50 SOIL	29/11/16	GJ 250ml, GJ 60ml, PT 1L		
1094250	MBH7 0.40 SOIL	28/11/16	GJ 60ml, PT 1L x2		
1094251	MBH8 0.40 SOIL	28/11/16	GJ 250ml, GJ 60ml, PT 1L		
1094252	MBH9 0.20 SOIL	28/11/16	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

APPENDIX D

Geotechnical Testing Results

Certificate of Analysis Certificate Number 16-86210

15-Dec-16

Client SOLMEK 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 16-86210
- Client Reference D7716
 - Order No (not supplied)
 - Contract Title Porlock, Jarrow
 - Description 3 Soil samples.
 - Date Received 09-Dec-16
 - Date Started 09-Dec-16
- Date Completed 15-Dec-16

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

-4Q.

Rob Brown Business Manager

Our Ref 16-86210 Client Ref D7716 Contract Title Porlock, Jarrow

			Lab No	1096884	1096885	1096886
		S	ample ID	MBH1	MBH2	MBH7
			Depth	0.50	2.50	0.90
			Other ID			
		Sam	ple Type	SOIL	SOIL	SOIL
		Samp	ling Date	n/s	n/s	n/s
		Samp	ling Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Inorganics						
рН	DETSC 2008#			7.8	8.0	8.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	200	4000	82

Inannronriate

Information in Support of the Analytical Results

Our Ref 16-86210 Client Ref D7716 Contract Porlock, Jarrow

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1096884	MBH1 0.50 SOIL		PT 1L		
1096885	MBH2 2.50 SOIL		PT 1L		
1096886	MBH7 0.90 SOIL		PT 1L		

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Laboratory Report F	Solmek 12-16 Yarm Road, Stockton on Tees,		
Site name	Job number	TS18 3NA	
Porlock, Jarrow	D7716	01642 607083 lab@solmek.com	UKAS TESTING 7607

Client details:

	Reference:	D7716				
	Name:	Dunelm				
	Address:	Foundation House, St John's Road, Meadowfield,				
		DH7 8TZ				
	Telephone:	0191 3783151				
	Email:	kjones@dunelm.co.uk				
	FAO:	K Jones				
Date	commenced:	08/12/2016				
Date	reported:	21/12/2016				

Observations and interpretations are outside of the UKAS Accreditiation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Samples will be held at the laboratory for a period of 4 weeks after the report date. After the 21-01-2017 all samples will be disposed of. Should further testing be required then the office should be informed before the above date.

Signature:	Approved Signitories:
	✓ K Watkin (Lab Manager)
Kattio	U Mazhar (Assistant Lab Manager)
	I Nicholson (Technical Manager)

Summary of Classification Tests										Solmek 12-16 Yarm Stockton on	Road, Tees,			
Site name	F	Porlock, Jarro	w			Job numbe	er Di	7716				TS18 3NA 01642 607083 lab@solmek.com 7607		
Hole	De Top m	pth Base m	Туре	w %	Ove tem	en np.	Р _а	<i>P</i> _r %	w _L	<i>w</i> _P %	<i>I</i> _P %	IL	Plasticity class	Preparation method
MBH1	0.50		D	22	10	15 24	91	9	50-s	20	30	0.133	СН	Tested after >425µm removed by hand
MBH2	2.50		D	51	10	5 55	93	7	58-s	22	36	0.917	СН	Tested after >425µm removed by hand
MBH3	0.30		В	33	10	5 34	96	4	58-s	31	27	0.111	МН	Tested after >425µm removed by hand
MBH5	1.20		L	28	10	5 30	92	8	50-s	24	26	0.231	СН	Tested after >425µm removed by hand
MBH7	0.90		В	20	10	15 22	91	9	50-s	24	26	-0.077	СН	Tested after >425µm removed by hand
MBH9	0.50		В	28	10	5 29	95	5	35-s	17	18	0.667	CI	Tested after >425µm removed by hand

All tests found in Solmek UKAS Schedule of Accreditation are tested to standard unless otherwise indicated

Key	Description		Category	BS Test Code
w	Moisture content			BS 1377:1990 Part 2 Clause 3.2
w _a	Equivalent moistur sieve	re content passing 425μm		BS 1377:1990 Part 2 Clause 3.2
147 -	Liquid limit	Single point	-S	BS 1377:1990 Part 2 Clause 4.4
wL	Four point	-f	BS 1377:1990 Part 2 Clause 4.3	
W _P	Plastic limit			BS 1377:1990 Part 2 Clause 5.2
P _a	Percentage passing 425um sieve			
P _r	Percentage retained 425um sieve			
I _P	Plasticity index			BS 1377:1990 Part 2 Clause 5.4
I _L	Liquidity index			BS 1377:1990 Part 2 Clause 5.4
	Suffix indicating te Accredited"	st is "Not UKAS	*	

Approved by	кw
Approval date	21/12/2016 11:13
Date report generated	
Report Number	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	100			
28	100			
20	95			
14	95			
10	93			
6.3	92			
5	92			
3.35	91			
2	90			
1.18	86			
0.6	75	Particle density	(assumed)	
0.425	70	2.65	Mg/m3	
0.3	64			
0.212	58			
0.15	51			
0.063	42			

Drv	Mass	of	sam	ple.	g
y	111035	01	Juili	pic,	ъ

394

Sample Proportions	% dry mass
Very coarse	0
Gravel	10
Sand	48
Fines <0.063mm	42

Grading Analysis		
D100	mm	
D60	mm	0.242
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with test method unless noted below

Accreditation status

Sedimentation tests are not currently part of the Solmek UKAS accreditation schedule.

Approved by	кw	
Approval date	16/12/2016 07:50	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	100			
28	96			
20	86			
14	86			
10	85			
6.3	83			
5	83			
3.35	82			
2	81			
1.18	79			
0.6	77	Particle density	(assumed)	
0.425	75	2.65	Mg/m3	
0.3	73			
0.212	70			
0.15	66			
0.063	61			

Drv	Macc	of	comn	lo.	a
Drv	wass	OT	samp	ie.	g

955

Sample Proportions	% dry mass	
Very coarse	0	
Gravel	19	
Sand	20	
Fines <0.063mm	61	

Grading Analysis		
D100	mm	
D60	mm	
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with test method unless noted below

Accreditation status

Sedimentation tests are not currently part of the Solmek UKAS accreditation schedule.

Approved by	кw	
Approval date	16/12/2016 07:54	

Siev	ving	Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	97		
20	90		
14	89		
10	88		
6.3	86		
5	86		
3.35	85		
2	84		
1.18	82		
0.6	80	Particle density	(assumed)
0.425	78	2.65	Mg/m3
0.3	76		
0.212	73		
0.15	69		
0.063	63		

-		~		
Drv	Mass	of san	nple. I	g

950

Sample Proportions	% dry mass
Very coarse	0
Gravel	16
Sand	21
Fines <0.063mm	63

Grading Analysis		
D100	mm	
D60	mm	
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with test method unless noted below

Accreditation status

Sedimentation tests are not currently part of the Solmek UKAS accreditation schedule.

Approved by	КW
Approval date	21/12/2016 11:15

	Moisture Conditio	n Value / Moist	ure Content	Job Ref	D7716
	R	Relationship		Borehole/Pit No.	MBH3
Site Name	Porlock, Jarrow			Sample No.	
Soil Description			Depth	0.3	
Specimen Reference	Spe Dep	Specimen m Depth		Sample Type	В
Specimen Description	à¦[,}ÊÁ ðî@ ^Á;¦æç,^ ^ÊØ& æ^^ÂÜŒĐÖ		KeyLAB ID	SLMK2016121028	
Test Method	BS1377:Part4:1990:clause 5.5		Date started	10/12/2016	

Sample preparation

Amount of material larger than 20mm sieve removed	0	%
Natural Moisture Content of sample	33	%
Initial Moisture Content of test sample below 20mm		%

General remarks

Table of results

•

MCV Test Number	1	2	3	4	
Moisture Content, %	6.9	9.8	16.2	19.1	
Moisture Condition Value	16.9	16.8	15.9	15.8	
MCV report	16.9	16.8	15.9	15.8	
Effective / Valid data point	YES	YES	YES	YES	
Specimen remarks					
Specimen remarks					

valid points × invalid points ---- extended regression ----- linear regression

	M.Southgate	
17716	Dago 8 of 11	

κw

D7716 - Page 8 of 11

	Moisture Condition	Moisture Condition Value / Moisture Content			D7716
	Re	Relationship		Borehole/Pit No.	MBH5
Site Name	Porlock, Jarrow			Sample No.	
Soil Description				Depth	1.2
Specimen Reference	Specimen m Depth		Sample Type	L	
Specimen Description	brown, slightly gravelly CLAY		KeyLAB ID	SLMK2016121029	
Test Method	BS1377:Part4:1990:clause 5.5		Date started	10/12/2016	
Sample preparation	Amount of material larger than 20mm sieve removed			4	%

Sample preparation

Amount of material larger than 20mm sieve removed 4 Natural Moisture Content of sample 25 Initial Moisture Content of test sample below 20mm

%

%

General remarks

Table of results

•

1	2	3	4	
5.5	8.5	14.1	17.8	
16.2	15.4	15.4	13.8	
16.2	15.4	15.4	13.8	
YES	YES	YES	YES	
	1 5.5 16.2 16.2 YES	1 2 5.5 8.5 16.2 15.4 16.2 15.4 YES YES	1 2 3 5.5 8.5 14.1 16.2 15.4 15.4 16.2 15.4 15.4 YES YES YES	1 2 3 4 5.5 8.5 14.1 17.8 16.2 15.4 15.4 13.8 16.2 15.4 15.4 13.8 YES YES YES YES

valid points invalid points --- extended regression - linear regression ×

Tested	Checked	Approved
 M.Southgate		KW

D7716 - Page 9 of 11

APPENDIX E

Gas Monitoring Results

	GAS MONITORING SHEET											
Contract Number	D7716											
Contract Name	Porlock Jarro	ow										
Date	22.12.16											
Time (start & finish)	12.00-12.30						Visit No.	2	of	6		
Weather	Overcast)vercast										
Ground Conditions	Wet	Wet										
Operator Initials	NY											
Ambient Readings	O ₂ (9	% v/v)	20.0	CO₂ (% v/v)	ND	CH4 (% v/v)	ND	PID reading (ppm) NR		NR		
Atmospheric Pressure (mbar)	Start:		1017			Finish:		1017		Re		
Air temperature °C	Start:		7			Finish:		7				
Instrument Details	Gas Data Ltd GFM 436 (Serial 12666)											
Last Calibration	GFM 436 16	6.02.16										
Instrument Details												
Last Calibration												
	Deels	Cteedu		Deels	Cteady	Deels	Cteedu	Deels	Cteedu	Deels		
	Реак	Steady	Relative	Реак	Steady	Реак	Steady	Реак	Steady	Реак	LOW	
BH No.	Flow Rate (I/hr)		pressure mbar	CH₄ (%v/v)		CO ₂ (%v/v)		O ₂ (%v/v)		PID	PID (ppm)	
MBH1	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
MBH2	ND	ND	0.00	ND	ND	2 00	2 00	15 70	15 70	NR	NR	
MBH9	ND	ND	0.00	ND	ND	2.00	2.00	17 30	17 30	NR	NR	
			0.00			2.00	2.00	17.00	17.00			
		•	•	-				-	•	-	•	
	Details of groundwater purging & sampling inc. volume sampled											
	J											
	<u> </u>											
Nata												
Notes:												

Monitoring order is from **left to right** across table above. Regional trend is that shown at nearest Met office location at time of monitoring. **Key: ND None Detected**

- NR Not Recorded
- SWL Standing Water Level

Dunelm Geotechnical & Environmental Ltd

gional Trend:

Falling

V	Range	Range						
	H₂S (ppm)	CO (ppm)	SWL (m bgl)	Base of pipe (m bgl)	Remarks			
2	NR	NR	0.11	3.10				
	ND	ND	Dry	2.10				
2	ND	ND	Dry	3.05				
	L							

APPENDIX F

Dunelm Conditions of Offer, Notes on Limitations & Basis for Contract

Dunelm Conditions of Offer, Notes on Limitations & Basis for Contract

These conditions accompany our tender and supercede any previous conditions issued. The firm will prepare a report solely for the use of the Client (the party invoiced) and its agent(s). No reliance should be placed on the contents of this report, in whole or in part by 3rd parties. The report, its content and format and associated data are copyright, and the property of the firm. Photocopying of part or all of the contents, transfer or reproduction of any kind is forbidden without written permission from the firm. A charge may be levied against such approval, the same to be made at the discretion of the firm.

Site investigation is a process of sampling. The scope and size of an investigation may be considered proportional to levels of confidence regarding the ground and groundwater conditions. The exploratory holes undertaken investigate only a small volume of the ground in relation to the overall size of the site, and can only provide a general indication of site conditions. The opinions provided and recommendations given in this report are based on the ground conditions as encountered within each of the exploratory holes. There may be different ground conditions elsewhere on the site which have not been identified by this investigation and which therefore have not been taken into account in this report. Reports are generally subject to the comments of the local authority and Environment Agency. The comments made on groundwater conditions are based on observations made at the time that site work was carried out. It should be noted that mobile contamination, soil gas levels and groundwater levels may vary owing to seasonal, tidal and/or weather related effects. Unrecorded ancient mining may occur anywhere where seams that have been worked and influence the rock and soil above. Dissolution cavities can occur where gypsum or chalk is present. Rotary drilling is the recommended technique to prove the integrity of the rock.

Where the scope of the investigation is limited via access to information, time constraints, equipment limitations, testing, interpretation or by the client or his agents budgetary constraints, elements not set out in the proposal and excluded from the report are deemed to be omitted from the scope of the investigation.

The firm cannot be held liable and do not warrant, or otherwise guarantee the validity of information provided by third parties and subsequently used in our reports. The firm are not responsible for the action negligent or otherwise of subcontractors or third parties.

Desk studies are generally prepared in accordance with RICS guidelines. Environmental site investigations are generally undertaken as 'exploratory investigations' in accordance with the definitions provided in paragraph 5.4 of BS 10175:2001 in order to confirm the conceptual assumptions. You are advised to familiarize yourself with the typical scope of such an investigation. No pumping of water will be undertaken unless a licence or facilities/equipment have been arranged by others.

Where the type, number or/and depth of exploratory hole is specified by others, the firm cannot and will not be responsible for any subsequent shortfall or inadequacy in data, and any consequent shortfall in interpretation of environmental and geotechnical aspects which may be required at a later date in order to facilitate the design of permanent or temporary works.

All information acquired by the firm in the course of investigation is the property of the firm, and, only also becomes the joint property of the Client only on the complete settlement of all invoices relating to the project. The firm reserves the right to use the information in commercial tendering and marketing, unless the Client expressly wishes otherwise in writing. The quoted rates do not include VAT, and payment terms are 30 days from dispatch of invoice from our offices. Quotes are subject to a site visit.

We have allowed for 1 mobilisation and normal working hours unless otherwise stated. The scope of the investigation may be reviewed following the desk study and/or fieldwork. We have not allowed for acquiring services information, and cannot be responsible for damage to underground services or pipes not shown to us or not clearly shown on plans. Costs incurred will be passed on to you, and in commissioning the firm, you understand and accept that you/your agent have a contractual relationship with the firm & you accept this. Our rates assume unobstructed, reasonably level and firm access to the exploratory positions and adequate clear working areas and headroom. We have priced on the basis that you or your client have the necessary permissions, wayleaves and approvals to access land. All boreholes and pits are backfilled with arisings except where gas monitoring pipes are installed with stopcock covers. Dunelm are not responsible for any uneven surfaces as a result of siteworks and rutting and backfilled excavations may require re-levelling and/or making good by others after fieldwork is complete. Dunelm have not allowed for subsequent reinstatement as a result of settlement. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested f

We reserve the right to pursue full payment of the invoice prior to release of any information including reports. We advise you/your client that we may elect to pursue our statutory rights under late payment legislation, and will apply 8% to the base rate for unreasonably late payments. We will also apply the right to claim any associated legal costs incurred with recovery of late payments. The firm is exempt from the CIS Scheme. The firm offer to undertake work <u>only</u> in strict accordance with conditions covered by our current insurances, which are available for inspection. The company are not responsible for acts, negligent or otherwise of subcontractors and as a matter of policy cannot indemnify any other parties. Professional indemnity Insurance is limited to ten times the invoice net total except where stated otherwise by the firm, and we give notice that consequential loss as a direct or indirect result of the firms activities or omission of the same are excluded.